make the imgui window not be focused by default and put math_graphics into a namespace

This commit is contained in:
Sven Balzer 2025-02-26 14:16:48 +01:00
parent a872bede2c
commit 095f94b098
2 changed files with 746 additions and 735 deletions

View File

@ -2,6 +2,7 @@
#include <stdint.h>
#include <SDL3/SDL.h>
#include <imgui.h>
#include <imgui_internal.h>
#include <imgui_impl_sdl3.h>
#include <imgui_impl_sdlgpu3.h>
@ -14,6 +15,8 @@
#include "../assets/shader/basic_vertex_shader.h"
#include "../assets/shader/basic_pixel_shader.h"
using namespace M;
SDL_GPUDevice *device;
SDL_Window *window;
@ -750,6 +753,7 @@ int main(int argc, char **argv) {
ImGui_ImplSDLGPU3_Init(&imgui_init_info);
bool show_demo_window = true;
bool first_frame = true;
// MSG Message;
while (Running) {
@ -760,6 +764,11 @@ int main(int argc, char **argv) {
if (show_demo_window)
ImGui::ShowDemoWindow(&show_demo_window);
if (first_frame) {
ImGui::SetWindowFocus(NULL);
first_frame = false;
}
SDL_GPUCommandBuffer *command_buffer = SDL_AcquireGPUCommandBuffer(device);
if (!command_buffer) {
log_error("Failed to acquire gpu command buffer (%s). Exiting.", SDL_GetError());

View File

@ -11,82 +11,83 @@
#undef min
#undef max
//clamp
constexpr inline float clamp(float min, float a, float max) {
namespace M {
//clamp
constexpr inline float clamp(float min, float a, float max) {
float result = a;
if (a < min)
result = min;
if (a > max)
result = max;
return result;
}
}
//clamp für 0-1 Bereich (Grafik)
constexpr inline float clamp01(float a) {
//clamp für 0-1 Bereich (Grafik)
constexpr inline float clamp01(float a) {
return clamp(0, a, 1);
}
}
//clamp für Integer
constexpr inline int64_t clamp(int64_t min, int64_t a, int64_t max) {
//clamp für Integer
constexpr inline int64_t clamp(int64_t min, int64_t a, int64_t max) {
int64_t result = a;
if (a < min)
result = min;
if (a > max)
result = max;
return result;
}
}
//wurzelberechnung
inline float square_root(float a) {
//wurzelberechnung
inline float square_root(float a) {
return _mm_cvtss_f32(_mm_sqrt_ss(_mm_set_ss(a)));
}
}
inline float reciprocal_square_root(float a) {
inline float reciprocal_square_root(float a) {
return _mm_cvtss_f32(_mm_rsqrt_ss(_mm_set_ss(a)));
}
}
constexpr inline float min(float a, float b) {
constexpr inline float min(float a, float b) {
return a < b ? a : b;
}
}
constexpr inline float max(float a, float b) {
constexpr inline float max(float a, float b) {
return a > b ? a : b;
}
}
constexpr inline double min(double a, double b) {
constexpr inline double min(double a, double b) {
return a < b ? a : b;
}
}
constexpr inline double max(double a, double b) {
constexpr inline double max(double a, double b) {
return a > b ? a : b;
}
}
constexpr inline int64_t min(int64_t a, int64_t b) {
constexpr inline int64_t min(int64_t a, int64_t b) {
return a < b ? a : b;
}
}
template<typename T>
constexpr inline T min(T a, T b) {
template<typename T>
constexpr inline T min(T a, T b) {
return a < b ? a : b;
}
}
constexpr float lerp(float a, float b, float t) {
constexpr float lerp(float a, float b, float t) {
return (1.0f - t) * a + t * b;
}
}
inline float ilerp(float a, float b, float v) {
inline float ilerp(float a, float b, float v) {
return (v - a) / (b - a);
}
}
inline float remap(float in_a, float in_b, float out_a, float out_b, float v) {
inline float remap(float in_a, float in_b, float out_a, float out_b, float v) {
float t = ilerp(in_a, in_b, v);
return lerp(out_a, out_b, t);
}
}
//-----------------------------------------------
//Vektorberechnung 2-dim
union V2 {
//-----------------------------------------------
//Vektorberechnung 2-dim
union V2 {
struct {
float x;
float y;
@ -110,191 +111,191 @@ union V2 {
assert(index < 2);
return E[index];
}
};
};
//Negation von 2-dim Vektor
inline V2 operator -(V2 a) {
//Negation von 2-dim Vektor
inline V2 operator -(V2 a) {
return {
-a.x,
-a.y
};
}
}
//Addition 2er 2-dim Vektoren
inline V2 operator +(V2 a, V2 b) {
//Addition 2er 2-dim Vektoren
inline V2 operator +(V2 a, V2 b) {
return {
a.x + b.x,
a.y + b.y
};
}
}
//Vektor Addition
inline V2 operator +=(V2& a, V2 b) {
//Vektor Addition
inline V2 operator +=(V2& a, V2 b) {
return a = a + b;
}
}
//Subtraktion 2er 2-dim Vektoren
inline V2 operator -(V2 a, V2 b) {
//Subtraktion 2er 2-dim Vektoren
inline V2 operator -(V2 a, V2 b) {
return {
a.x - b.x,
a.y - b.y
};
}
}
//Vektor Subtraktion
inline V2 operator -=(V2& a, V2 b) {
//Vektor Subtraktion
inline V2 operator -=(V2& a, V2 b) {
return a = a - b;
}
}
//Skalarmultiplikation -> erst Skalar, dann Vektor
inline V2 operator *(float a, V2 b) {
//Skalarmultiplikation -> erst Skalar, dann Vektor
inline V2 operator *(float a, V2 b) {
return {
a * b.x,
a * b.y
};
}
}
//Skalarmultiplikation -> erst Vektor, dann Skalar
inline V2 operator *(V2 a, float b) {
//Skalarmultiplikation -> erst Vektor, dann Skalar
inline V2 operator *(V2 a, float b) {
return {
a.x * b,
a.y * b
};
}
}
//Skalarmultiplikation -> mit V2 Pointer
inline V2 &operator *= (V2 &a, float b) {
//Skalarmultiplikation -> mit V2 Pointer
inline V2 &operator *= (V2 &a, float b) {
a = a * b;
return a;
}
}
//Division mit einem Skalar Oo -> Skalar geteilt durch Vektor
inline V2 operator /(float a, V2 b) {
//Division mit einem Skalar Oo -> Skalar geteilt durch Vektor
inline V2 operator /(float a, V2 b) {
return {
a / b.x,
a / b.y
};
}
}
//Division mit einem Skalar Oo -> Vektor geteilt durch Skalar
inline V2 operator /(V2 a, float b) {
//Division mit einem Skalar Oo -> Vektor geteilt durch Skalar
inline V2 operator /(V2 a, float b) {
return {
a.x / b,
a.y / b
};
}
}
//Division mit einem Skalar -> 2 Vektoren
inline V2 operator /(V2 a, V2 b) {
//Division mit einem Skalar -> 2 Vektoren
inline V2 operator /(V2 a, V2 b) {
return {
a.x / b.x,
a.y / b.y
};
}
}
//Division mit einem Skalar -> mit V2 Pointer
inline V2 &operator /= (V2 &a, float b) {
//Division mit einem Skalar -> mit V2 Pointer
inline V2 &operator /= (V2 &a, float b) {
a = a / b;
return a;
}
}
//Skalarprodukt
inline float dot(V2 a, V2 b) {
//Skalarprodukt
inline float dot(V2 a, V2 b) {
return a.x * b.x + a.y * b.y;
}
}
//Hadamard-Produkt
inline V2 hadamard(V2 a, V2 b) {
//Hadamard-Produkt
inline V2 hadamard(V2 a, V2 b) {
return {
a.x * b.x,
a.y * b.y
};
}
}
//Betrag des Vektors quadrieren
inline float length_squared(V2 a) {
//Betrag des Vektors quadrieren
inline float length_squared(V2 a) {
return dot(a, a);
}
}
//Betrag eines Vektors
inline float length(V2 a) {
//Betrag eines Vektors
inline float length(V2 a) {
return square_root(length_squared(a));
}
}
//Reziproke der Länge
inline float reciprocal_length(V2 a) {
//Reziproke der Länge
inline float reciprocal_length(V2 a) {
return reciprocal_square_root(length_squared(a));
}
}
//Einheitsvektor
inline V2 normalize(V2 a) {
//Einheitsvektor
inline V2 normalize(V2 a) {
return a * reciprocal_length(a);
}
}
//Vektor der 90
inline V2 perp(V2 a) {
//Vektor der 90
inline V2 perp(V2 a) {
return {
-a.y,
a.x
};
}
}
//clamp für 2-dim Vektor
inline V2 clamp01(V2 a) {
//clamp für 2-dim Vektor
inline V2 clamp01(V2 a) {
return {
clamp01(a.x),
clamp01(a.y)
};
}
}
//Vektor mit den kleinsten Werten 2er Vektoren
inline V2 min(V2 a, V2 b) {
//Vektor mit den kleinsten Werten 2er Vektoren
inline V2 min(V2 a, V2 b) {
return {
min(a.x, b.x),
min(a.y, b.y),
};
}
}
//Vektor mit den groessten Werten 2er Vektoren
inline V2 max(V2 a, V2 b) {
//Vektor mit den groessten Werten 2er Vektoren
inline V2 max(V2 a, V2 b) {
return {
max(a.x, b.x),
max(a.y, b.y),
};
}
}
//kleinster Vektor Wert
inline float min(V2 a) {
//kleinster Vektor Wert
inline float min(V2 a) {
return min(a.x, a.y);
}
}
//groesster Vektor Wert
inline float max(V2 a) {
//groesster Vektor Wert
inline float max(V2 a) {
return max(a.x, a.y);
}
}
//Lerp mit 2 Vektoren
inline V2 lerp(V2 a, V2 b, V2 t) {
//Lerp mit 2 Vektoren
inline V2 lerp(V2 a, V2 b, V2 t) {
return V2{
lerp(a.x, b.x, t.x),
lerp(a.y, b.y, t.y),
};
}
}
//
inline V2 ilerp(V2 a, V2 b, V2 v) {
//
inline V2 ilerp(V2 a, V2 b, V2 v) {
return (v - a) / (b - a);
}
}
//
inline V2 remap(V2 in_a, V2 in_b, V2 out_a, V2 out_b, V2 v) {
//
inline V2 remap(V2 in_a, V2 in_b, V2 out_a, V2 out_b, V2 v) {
V2 t = ilerp(in_a, in_b, v);
return lerp(out_a, out_b, t);
}
}
//-----------------------------------------------
//Vektorberechnung 3-dim
union V3 {
//-----------------------------------------------
//Vektorberechnung 3-dim
union V3 {
struct {
float x;
float y;
@ -335,117 +336,117 @@ union V3 {
assert(index < 3);
return E[index];
}
};
};
//Negation von 2-dim Vektor
inline V3 operator -(V3 a) {
//Negation von 2-dim Vektor
inline V3 operator -(V3 a) {
return {
-a.x,
-a.y,
-a.z
};
}
}
//Addition 2er 2-dim Vektoren
inline V3 operator +(V3 a, V3 b) {
//Addition 2er 2-dim Vektoren
inline V3 operator +(V3 a, V3 b) {
return {
a.x + b.x,
a.y + b.y,
a.z + b.z
};
}
}
//Subtraktion 2er 2-dim Vektoren
inline V3 operator -(V3 a, V3 b) {
//Subtraktion 2er 2-dim Vektoren
inline V3 operator -(V3 a, V3 b) {
return {
a.x - b.x,
a.y - b.y,
a.z - b.z
};
}
}
//Skalarmultiplikation -> erst Skalar, dann Vektor
inline V3 operator *(float a, V3 b) {
//Skalarmultiplikation -> erst Skalar, dann Vektor
inline V3 operator *(float a, V3 b) {
return {
a * b.x,
a * b.y,
a * b.z
};
}
}
//Skalarmultiplikation -> erst Vektor, dann Skalar
inline V3 operator *(V3 a, float b) {
//Skalarmultiplikation -> erst Vektor, dann Skalar
inline V3 operator *(V3 a, float b) {
return {
a.x * b,
a.y * b,
a.z * b
};
}
}
//Division mit nem Skalar Oo -> Skalar geteilt durch Vektor
inline V3 operator /(float a, V3 b) {
//Division mit nem Skalar Oo -> Skalar geteilt durch Vektor
inline V3 operator /(float a, V3 b) {
return {
a / b.x,
a / b.y,
a / b.z
};
}
}
//Division mit nem Skalar Oo -> Vektor geteilt durch Skalar
inline V3 operator /(V3 a, float b) {
//Division mit nem Skalar Oo -> Vektor geteilt durch Skalar
inline V3 operator /(V3 a, float b) {
return {
a.x / b,
a.y / b,
a.z / b
};
}
}
//Skalarprodukt
inline float dot(V3 a, V3 b) {
//Skalarprodukt
inline float dot(V3 a, V3 b) {
return a.x * b.x + a.y * b.y + a.z * b.z;
}
}
//Hadamard-Produkt
inline V3 hadamard(V3 a, V3 b) {
//Hadamard-Produkt
inline V3 hadamard(V3 a, V3 b) {
return {
a.x * b.x,
a.y * b.y,
a.z * b.z
};
}
}
//Kreuzprodukt
inline V3 cross(V3 a, V3 b) {
//Kreuzprodukt
inline V3 cross(V3 a, V3 b) {
return {
a.y * b.z - a.z * b.y,
a.z * b.x - a.x * b.z,
a.x * b.y - a.y * b.x
};
}
}
//Betrag des Vektors quadrieren
inline float length_squared(V3 a) {
//Betrag des Vektors quadrieren
inline float length_squared(V3 a) {
return dot(a, a);
}
}
//Betrag eines Vektors
inline float length(V3 a) {
//Betrag eines Vektors
inline float length(V3 a) {
return square_root(length_squared(a));
}
}
//Reziproke der Länge
inline float reciprocal_length(V3 a) {
//Reziproke der Länge
inline float reciprocal_length(V3 a) {
return reciprocal_square_root(length_squared(a));
}
}
//Einheitsvektor
inline V3 normalize(V3 a) {
//Einheitsvektor
inline V3 normalize(V3 a) {
return a * reciprocal_length(a);
}
}
union V4 {
union V4 {
struct {
float x;
float y;
@ -501,18 +502,18 @@ union V4 {
assert(index < 4);
return E[index];
}
};
};
//-----------------------------------------------
//2x2 Matrix
//-----------------------------------------------
//2x2 Matrix
//M2x2 m;
//m.E[0][1]
//m.V[1]
//M2x2 m;
//m.E[0][1]
//m.V[1]
//m[1][0]
union M2x2 {
//m[1][0]
union M2x2 {
struct {
float x1; float x2;
float y1; float y2;
@ -530,84 +531,84 @@ union M2x2 {
assert(index < 2);
return V[index];
}
};
};
//Matrix negieren
inline M2x2 operator -(M2x2 a){
//Matrix negieren
inline M2x2 operator -(M2x2 a){
return {
-a[0][0], -a[0][1],
-a[1][0], -a[1][1]
};
}
}
//Matrix Addition
inline M2x2 operator +(M2x2 a, M2x2 b) {
//Matrix Addition
inline M2x2 operator +(M2x2 a, M2x2 b) {
return {
a[0][0] + b[0][0], a[0][1] + b[0][1],
a[1][0] + b[1][0], a[1][1] + b[1][1]
};
}
}
//Matrix Subtraktion
inline M2x2 operator -(M2x2 a, M2x2 b) {
//Matrix Subtraktion
inline M2x2 operator -(M2x2 a, M2x2 b) {
return {
a[0][0] - b[0][0], a[0][1] - b[0][1],
a[1][0] - b[1][0], a[1][1] - b[1][1]
};
}
}
//Matrix Skalarmultiplikation
inline M2x2 operator *(M2x2 a, float b) {
//Matrix Skalarmultiplikation
inline M2x2 operator *(M2x2 a, float b) {
return {
a[0][0] * b, a[0][1] * b,
a[1][0] * b, a[1][1] * b
};
}
}
//Matrix Skalarmultiplikation
inline M2x2 operator *(float a, M2x2 b) {
//Matrix Skalarmultiplikation
inline M2x2 operator *(float a, M2x2 b) {
return {
a * b[0][0], a * b[0][1],
a * b[1][0], a * b[1][1]
};
}
}
//Matrix Multiplikation
inline M2x2 operator *(M2x2 a, M2x2 b) {
//Matrix Multiplikation
inline M2x2 operator *(M2x2 a, M2x2 b) {
return {
a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1],
a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]
};
}
}
//Matrix * Vektor
inline V2 operator *(M2x2 a, V2 b) {
//Matrix * Vektor
inline V2 operator *(M2x2 a, V2 b) {
return {
a[0][0] * b[0] + a[0][1] * b[1],
a[1][0] * b[0] + a[1][1] * b[1],
};
}
}
//Matrix Transponieren
inline M2x2 transpose(M2x2 a) {
//Matrix Transponieren
inline M2x2 transpose(M2x2 a) {
return {
a[0][0], a[1][0],
a[0][1], a[1][1]
};
}
}
//Einheitsmatrix (oder Identitätsmatrix)
constexpr inline M2x2 identityM2x2() {
//Einheitsmatrix (oder Identitätsmatrix)
constexpr inline M2x2 identityM2x2() {
return {
1.0f, 0.0f,
0.0f, 1.0f
};
}
}
//-----------------------------------------------
//3x3 Matrix
union M3x3 {
//-----------------------------------------------
//3x3 Matrix
union M3x3 {
struct {
float x1; float x2; float x3;
float y1; float y2; float y3;
@ -628,145 +629,146 @@ union M3x3 {
return V[index];
}
};
};
//Matrix negieren
inline M3x3 operator -(M3x3 a) {
//Matrix negieren
inline M3x3 operator -(M3x3 a) {
return {
-a[0][0], -a[0][1], -a[0][1],
-a[1][0], -a[1][1], -a[1][2],
-a[2][0], -a[2][1], -a[2][2]
};
}
}
//Matrix Addition
inline M3x3 operator +(M3x3 a, M3x3 b) {
//Matrix Addition
inline M3x3 operator +(M3x3 a, M3x3 b) {
return {
a[0][0] + b[0][0], a[0][1] + b[0][1], a[0][2] + b[0][2],
a[1][0] + b[1][0], a[1][1] + b[1][1], a[1][2] + b[1][2],
a[2][0] + b[2][0], a[2][1] + b[2][1], a[2][2] + b[2][2]
};
}
}
//Matrix Subtraktion
inline M3x3 operator -(M3x3 a, M3x3 b) {
//Matrix Subtraktion
inline M3x3 operator -(M3x3 a, M3x3 b) {
return {
a[0][0] - b[0][0], a[0][1] - b[0][1], a[0][2] - b[0][2],
a[1][0] - b[1][0], a[1][1] - b[1][1], a[1][2] - b[1][2],
a[2][0] - b[2][0], a[2][1] - b[2][1], a[2][2] - b[2][2]
};
}
}
//Matrix Skalarmultiplikation
inline M3x3 operator *(M3x3 a, float b) {
//Matrix Skalarmultiplikation
inline M3x3 operator *(M3x3 a, float b) {
return {
a[0][0] * b, a[0][1] * b, a[0][2] * b,
a[1][0] * b, a[1][1] * b, a[1][2] * b,
a[2][0] * b, a[2][1] * b, a[2][2] * b
};
}
}
//Matrix Skalarmultiplikation
inline M3x3 operator *(float a, M3x3 b) {
//Matrix Skalarmultiplikation
inline M3x3 operator *(float a, M3x3 b) {
return {
a * b[0][0], a * b[0][1], a * b[0][2],
a * b[1][0], a * b[1][1], a * b[1][2],
a * b[2][0], a * b[2][1], a * b[2][2]
};
}
}
//Matrix Multiplikation
inline M3x3 operator *(M3x3 a, M3x3 b) {
//Matrix Multiplikation
inline M3x3 operator *(M3x3 a, M3x3 b) {
return {
a[0][0] * b[0][0] + a[0][1] * b[1][0] + a[0][2] * b[2][0], a[0][0] * b[0][1] + a[0][1] * b[1][1] + a[0][2] * b[2][1], a[0][0] * b[0][2] + a[0][1] * b[1][2] + a[0][2] * b[2][2],
a[1][0] * b[0][0] + a[1][1] * b[1][0] + a[1][2] * b[2][0], a[1][0] * b[0][1] + a[1][1] * b[1][1] + a[1][2] * b[2][1], a[1][0] * b[0][2] + a[1][1] * b[1][2] + a[0][2] * b[2][2],
a[2][0] * b[0][0] + a[2][1] * b[1][0] + a[2][2] * b[2][0], a[2][0] * b[0][1] + a[2][1] * b[1][1] + a[2][2] * b[2][1], a[2][0] * b[0][2] + a[2][1] * b[1][2] + a[0][2] * b[2][2]
};
}
}
//Matrix * V2
inline V2 operator *(M3x3 a, V2 b) {
//Matrix * V2
inline V2 operator *(M3x3 a, V2 b) {
return {
b.x * a[0][0] + b.y * a[0][1] + 1.0f * a[0][2],
b.x * a[1][0] + b.y * a[1][1] + 1.0f * a[1][2],
};
}
}
//Matrix * V3
inline V3 operator *(M3x3 a, V3 b) {
//Matrix * V3
inline V3 operator *(M3x3 a, V3 b) {
return {
b.x * a[0][0] + b.y * a[0][1] + b.z * a[0][2],
b.x * a[1][0] + b.y * a[1][1] + b.z * a[1][2],
b.x * a[2][0] + b.y * a[2][1] + b.z * a[2][2]
};
}
}
//Matrix transponieren
inline M3x3 transpose(M3x3 a) {
//Matrix transponieren
inline M3x3 transpose(M3x3 a) {
return {
a[0][0], a[1][0], a[2][0],
a[0][1], a[1][1], a[2][1],
a[0][2], a[1][2], a[2][2]
};
}
}
//Einheitsmatrix (oder Identitätsmatrix)
inline M3x3 identityM3x3() {
//Einheitsmatrix (oder Identitätsmatrix)
inline M3x3 identityM3x3() {
return {
1.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 1.0f
};
}
}
//-----------------------------------------------
//m128i
struct m128i {
//-----------------------------------------------
//m128i
struct m128i {
__m128i val;
};
};
inline __m128i operator &(m128i a, m128i b) {
inline __m128i operator &(m128i a, m128i b) {
return _mm_and_si128(a.val, b.val);
}
}
inline __m128i operator |(m128i a, m128i b) {
inline __m128i operator |(m128i a, m128i b) {
return _mm_or_si128(a.val, b.val);
}
}
inline __m128i operator >>(m128i a, int b) {
inline __m128i operator >>(m128i a, int b) {
return _mm_srli_epi32(a.val, b);
}
}
inline __m128i operator <<(m128i a, int b) {
inline __m128i operator <<(m128i a, int b) {
return _mm_slli_epi32(a.val, b);
}
}
//-----------------------------------------------
//m128
struct m128 {
//-----------------------------------------------
//m128
struct m128 {
__m128 val;
};
};
inline __m128 operator +(m128 a, m128 b) {
inline __m128 operator +(m128 a, m128 b) {
return _mm_mul_ps(a.val, b.val);
}
}
inline __m128 operator *(m128 a, m128 b) {
inline __m128 operator *(m128 a, m128 b) {
return _mm_mul_ps(a.val, b.val);
}
}
inline __m128 operator *(float a, m128 b) {
inline __m128 operator *(float a, m128 b) {
return _mm_mul_ps(_mm_set1_ps(a), b.val);
}
}
inline __m128 square_root(__m128 a) {
inline __m128 square_root(__m128 a) {
return _mm_sqrt_ps(a);
}
}
inline __m128 operator /(m128 a, m128 b) {
inline __m128 operator /(m128 a, m128 b) {
return _mm_div_ps(a.val, b.val);
}
}