update stb libs

This commit is contained in:
Sven Balzer 2025-02-25 12:58:06 +01:00
parent c70a9a245b
commit a6a6761e9f
3 changed files with 5060 additions and 5057 deletions

File diff suppressed because it is too large Load Diff

View File

@ -1,9 +1,15 @@
// stb_rect_pack.h - v1.00 - public domain - rectangle packing // stb_rect_pack.h - v1.01 - public domain - rectangle packing
// Sean Barrett 2014 // Sean Barrett 2014
// //
// Useful for e.g. packing rectangular textures into an atlas. // Useful for e.g. packing rectangular textures into an atlas.
// Does not do rotation. // Does not do rotation.
// //
// Before #including,
//
// #define STB_RECT_PACK_IMPLEMENTATION
//
// in the file that you want to have the implementation.
//
// Not necessarily the awesomest packing method, but better than // Not necessarily the awesomest packing method, but better than
// the totally naive one in stb_truetype (which is primarily what // the totally naive one in stb_truetype (which is primarily what
// this is meant to replace). // this is meant to replace).
@ -35,6 +41,7 @@
// //
// Version history: // Version history:
// //
// 1.01 (2021-07-11) always use large rect mode, expose STBRP__MAXVAL in public section
// 1.00 (2019-02-25) avoid small space waste; gracefully fail too-wide rectangles // 1.00 (2019-02-25) avoid small space waste; gracefully fail too-wide rectangles
// 0.99 (2019-02-07) warning fixes // 0.99 (2019-02-07) warning fixes
// 0.11 (2017-03-03) return packing success/fail result // 0.11 (2017-03-03) return packing success/fail result
@ -71,119 +78,118 @@
extern "C" { extern "C" {
#endif #endif
typedef struct stbrp_context stbrp_context; typedef struct stbrp_context stbrp_context;
typedef struct stbrp_node stbrp_node; typedef struct stbrp_node stbrp_node;
typedef struct stbrp_rect stbrp_rect; typedef struct stbrp_rect stbrp_rect;
#ifdef STBRP_LARGE_RECTS typedef int stbrp_coord;
typedef int stbrp_coord;
#else
typedef unsigned short stbrp_coord;
#endif
STBRP_DEF int stbrp_pack_rects(stbrp_context* context, stbrp_rect* rects, int num_rects); #define STBRP__MAXVAL 0x7fffffff
// Assign packed locations to rectangles. The rectangles are of type // Mostly for internal use, but this is the maximum supported coordinate value.
// 'stbrp_rect' defined below, stored in the array 'rects', and there
// are 'num_rects' many of them.
//
// Rectangles which are successfully packed have the 'was_packed' flag
// set to a non-zero value and 'x' and 'y' store the minimum location
// on each axis (i.e. bottom-left in cartesian coordinates, top-left
// if you imagine y increasing downwards). Rectangles which do not fit
// have the 'was_packed' flag set to 0.
//
// You should not try to access the 'rects' array from another thread
// while this function is running, as the function temporarily reorders
// the array while it executes.
//
// To pack into another rectangle, you need to call stbrp_init_target
// again. To continue packing into the same rectangle, you can call
// this function again. Calling this multiple times with multiple rect
// arrays will probably produce worse packing results than calling it
// a single time with the full rectangle array, but the option is
// available.
//
// The function returns 1 if all of the rectangles were successfully
// packed and 0 otherwise.
struct stbrp_rect STBRP_DEF int stbrp_pack_rects (stbrp_context *context, stbrp_rect *rects, int num_rects);
{ // Assign packed locations to rectangles. The rectangles are of type
// reserved for your use: // 'stbrp_rect' defined below, stored in the array 'rects', and there
int id; // are 'num_rects' many of them.
//
// Rectangles which are successfully packed have the 'was_packed' flag
// set to a non-zero value and 'x' and 'y' store the minimum location
// on each axis (i.e. bottom-left in cartesian coordinates, top-left
// if you imagine y increasing downwards). Rectangles which do not fit
// have the 'was_packed' flag set to 0.
//
// You should not try to access the 'rects' array from another thread
// while this function is running, as the function temporarily reorders
// the array while it executes.
//
// To pack into another rectangle, you need to call stbrp_init_target
// again. To continue packing into the same rectangle, you can call
// this function again. Calling this multiple times with multiple rect
// arrays will probably produce worse packing results than calling it
// a single time with the full rectangle array, but the option is
// available.
//
// The function returns 1 if all of the rectangles were successfully
// packed and 0 otherwise.
// input: struct stbrp_rect
stbrp_coord w, h; {
// reserved for your use:
int id;
// output: // input:
stbrp_coord x, y; stbrp_coord w, h;
int was_packed; // non-zero if valid packing
}; // 16 bytes, nominally // output:
stbrp_coord x, y;
int was_packed; // non-zero if valid packing
}; // 16 bytes, nominally
STBRP_DEF void stbrp_init_target(stbrp_context* context, int width, int height, stbrp_node* nodes, int num_nodes); STBRP_DEF void stbrp_init_target (stbrp_context *context, int width, int height, stbrp_node *nodes, int num_nodes);
// Initialize a rectangle packer to: // Initialize a rectangle packer to:
// pack a rectangle that is 'width' by 'height' in dimensions // pack a rectangle that is 'width' by 'height' in dimensions
// using temporary storage provided by the array 'nodes', which is 'num_nodes' long // using temporary storage provided by the array 'nodes', which is 'num_nodes' long
// //
// You must call this function every time you start packing into a new target. // You must call this function every time you start packing into a new target.
// //
// There is no "shutdown" function. The 'nodes' memory must stay valid for // There is no "shutdown" function. The 'nodes' memory must stay valid for
// the following stbrp_pack_rects() call (or calls), but can be freed after // the following stbrp_pack_rects() call (or calls), but can be freed after
// the call (or calls) finish. // the call (or calls) finish.
// //
// Note: to guarantee best results, either: // Note: to guarantee best results, either:
// 1. make sure 'num_nodes' >= 'width' // 1. make sure 'num_nodes' >= 'width'
// or 2. call stbrp_allow_out_of_mem() defined below with 'allow_out_of_mem = 1' // or 2. call stbrp_allow_out_of_mem() defined below with 'allow_out_of_mem = 1'
// //
// If you don't do either of the above things, widths will be quantized to multiples // If you don't do either of the above things, widths will be quantized to multiples
// of small integers to guarantee the algorithm doesn't run out of temporary storage. // of small integers to guarantee the algorithm doesn't run out of temporary storage.
// //
// If you do #2, then the non-quantized algorithm will be used, but the algorithm // If you do #2, then the non-quantized algorithm will be used, but the algorithm
// may run out of temporary storage and be unable to pack some rectangles. // may run out of temporary storage and be unable to pack some rectangles.
STBRP_DEF void stbrp_setup_allow_out_of_mem(stbrp_context* context, int allow_out_of_mem); STBRP_DEF void stbrp_setup_allow_out_of_mem (stbrp_context *context, int allow_out_of_mem);
// Optionally call this function after init but before doing any packing to // Optionally call this function after init but before doing any packing to
// change the handling of the out-of-temp-memory scenario, described above. // change the handling of the out-of-temp-memory scenario, described above.
// If you call init again, this will be reset to the default (false). // If you call init again, this will be reset to the default (false).
STBRP_DEF void stbrp_setup_heuristic(stbrp_context* context, int heuristic); STBRP_DEF void stbrp_setup_heuristic (stbrp_context *context, int heuristic);
// Optionally select which packing heuristic the library should use. Different // Optionally select which packing heuristic the library should use. Different
// heuristics will produce better/worse results for different data sets. // heuristics will produce better/worse results for different data sets.
// If you call init again, this will be reset to the default. // If you call init again, this will be reset to the default.
enum enum
{ {
STBRP_HEURISTIC_Skyline_default = 0, STBRP_HEURISTIC_Skyline_default=0,
STBRP_HEURISTIC_Skyline_BL_sortHeight = STBRP_HEURISTIC_Skyline_default, STBRP_HEURISTIC_Skyline_BL_sortHeight = STBRP_HEURISTIC_Skyline_default,
STBRP_HEURISTIC_Skyline_BF_sortHeight STBRP_HEURISTIC_Skyline_BF_sortHeight
}; };
////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////
// //
// the details of the following structures don't matter to you, but they must // the details of the following structures don't matter to you, but they must
// be visible so you can handle the memory allocations for them // be visible so you can handle the memory allocations for them
struct stbrp_node struct stbrp_node
{ {
stbrp_coord x, y; stbrp_coord x,y;
stbrp_node* next; stbrp_node *next;
}; };
struct stbrp_context struct stbrp_context
{ {
int width; int width;
int height; int height;
int align; int align;
int init_mode; int init_mode;
int heuristic; int heuristic;
int num_nodes; int num_nodes;
stbrp_node* active_head; stbrp_node *active_head;
stbrp_node* free_head; stbrp_node *free_head;
stbrp_node extra[2]; // we allocate two extra nodes so optimal user-node-count is 'width' not 'width+2' stbrp_node extra[2]; // we allocate two extra nodes so optimal user-node-count is 'width' not 'width+2'
}; };
#ifdef __cplusplus #ifdef __cplusplus
} }
@ -209,384 +215,368 @@ extern "C" {
#ifdef _MSC_VER #ifdef _MSC_VER
#define STBRP__NOTUSED(v) (void)(v) #define STBRP__NOTUSED(v) (void)(v)
#define STBRP__CDECL __cdecl
#else #else
#define STBRP__NOTUSED(v) (void)sizeof(v) #define STBRP__NOTUSED(v) (void)sizeof(v)
#define STBRP__CDECL
#endif #endif
enum enum
{ {
STBRP__INIT_skyline = 1 STBRP__INIT_skyline = 1
}; };
STBRP_DEF void stbrp_setup_heuristic(stbrp_context* context, int heuristic) STBRP_DEF void stbrp_setup_heuristic(stbrp_context *context, int heuristic)
{ {
switch (context->init_mode) { switch (context->init_mode) {
case STBRP__INIT_skyline: case STBRP__INIT_skyline:
STBRP_ASSERT(heuristic == STBRP_HEURISTIC_Skyline_BL_sortHeight || heuristic == STBRP_HEURISTIC_Skyline_BF_sortHeight); STBRP_ASSERT(heuristic == STBRP_HEURISTIC_Skyline_BL_sortHeight || heuristic == STBRP_HEURISTIC_Skyline_BF_sortHeight);
context->heuristic = heuristic; context->heuristic = heuristic;
break; break;
default: default:
STBRP_ASSERT(0); STBRP_ASSERT(0);
} }
} }
STBRP_DEF void stbrp_setup_allow_out_of_mem(stbrp_context* context, int allow_out_of_mem) STBRP_DEF void stbrp_setup_allow_out_of_mem(stbrp_context *context, int allow_out_of_mem)
{ {
if (allow_out_of_mem) if (allow_out_of_mem)
// if it's ok to run out of memory, then don't bother aligning them; // if it's ok to run out of memory, then don't bother aligning them;
// this gives better packing, but may fail due to OOM (even though // this gives better packing, but may fail due to OOM (even though
// the rectangles easily fit). @TODO a smarter approach would be to only // the rectangles easily fit). @TODO a smarter approach would be to only
// quantize once we've hit OOM, then we could get rid of this parameter. // quantize once we've hit OOM, then we could get rid of this parameter.
context->align = 1; context->align = 1;
else { else {
// if it's not ok to run out of memory, then quantize the widths // if it's not ok to run out of memory, then quantize the widths
// so that num_nodes is always enough nodes. // so that num_nodes is always enough nodes.
// //
// I.e. num_nodes * align >= width // I.e. num_nodes * align >= width
// align >= width / num_nodes // align >= width / num_nodes
// align = ceil(width/num_nodes) // align = ceil(width/num_nodes)
context->align = (context->width + context->num_nodes - 1) / context->num_nodes; context->align = (context->width + context->num_nodes-1) / context->num_nodes;
} }
} }
STBRP_DEF void stbrp_init_target(stbrp_context* context, int width, int height, stbrp_node* nodes, int num_nodes) STBRP_DEF void stbrp_init_target(stbrp_context *context, int width, int height, stbrp_node *nodes, int num_nodes)
{ {
int i; int i;
#ifndef STBRP_LARGE_RECTS
STBRP_ASSERT(width <= 0xffff && height <= 0xffff);
#endif
for (i = 0; i < num_nodes - 1; ++i) for (i=0; i < num_nodes-1; ++i)
nodes[i].next = &nodes[i + 1]; nodes[i].next = &nodes[i+1];
nodes[i].next = NULL; nodes[i].next = NULL;
context->init_mode = STBRP__INIT_skyline; context->init_mode = STBRP__INIT_skyline;
context->heuristic = STBRP_HEURISTIC_Skyline_default; context->heuristic = STBRP_HEURISTIC_Skyline_default;
context->free_head = &nodes[0]; context->free_head = &nodes[0];
context->active_head = &context->extra[0]; context->active_head = &context->extra[0];
context->width = width; context->width = width;
context->height = height; context->height = height;
context->num_nodes = num_nodes; context->num_nodes = num_nodes;
stbrp_setup_allow_out_of_mem(context, 0); stbrp_setup_allow_out_of_mem(context, 0);
// node 0 is the full width, node 1 is the sentinel (lets us not store width explicitly) // node 0 is the full width, node 1 is the sentinel (lets us not store width explicitly)
context->extra[0].x = 0; context->extra[0].x = 0;
context->extra[0].y = 0; context->extra[0].y = 0;
context->extra[0].next = &context->extra[1]; context->extra[0].next = &context->extra[1];
context->extra[1].x = (stbrp_coord)width; context->extra[1].x = (stbrp_coord) width;
#ifdef STBRP_LARGE_RECTS context->extra[1].y = (1<<30);
context->extra[1].y = (1 << 30); context->extra[1].next = NULL;
#else
context->extra[1].y = 65535;
#endif
context->extra[1].next = NULL;
} }
// find minimum y position if it starts at x1 // find minimum y position if it starts at x1
static int stbrp__skyline_find_min_y(stbrp_context* c, stbrp_node* first, int x0, int width, int* pwaste) static int stbrp__skyline_find_min_y(stbrp_context *c, stbrp_node *first, int x0, int width, int *pwaste)
{ {
stbrp_node* node = first; stbrp_node *node = first;
int x1 = x0 + width; int x1 = x0 + width;
int min_y, visited_width, waste_area; int min_y, visited_width, waste_area;
STBRP__NOTUSED(c); STBRP__NOTUSED(c);
STBRP_ASSERT(first->x <= x0); STBRP_ASSERT(first->x <= x0);
#if 0 #if 0
// skip in case we're past the node // skip in case we're past the node
while (node->next->x <= x0) while (node->next->x <= x0)
++node; ++node;
#else #else
STBRP_ASSERT(node->next->x > x0); // we ended up handling this in the caller for efficiency STBRP_ASSERT(node->next->x > x0); // we ended up handling this in the caller for efficiency
#endif #endif
STBRP_ASSERT(node->x <= x0); STBRP_ASSERT(node->x <= x0);
min_y = 0; min_y = 0;
waste_area = 0; waste_area = 0;
visited_width = 0; visited_width = 0;
while (node->x < x1) { while (node->x < x1) {
if (node->y > min_y) { if (node->y > min_y) {
// raise min_y higher. // raise min_y higher.
// we've accounted for all waste up to min_y, // we've accounted for all waste up to min_y,
// but we'll now add more waste for everything we've visted // but we'll now add more waste for everything we've visted
waste_area += visited_width * (node->y - min_y); waste_area += visited_width * (node->y - min_y);
min_y = node->y; min_y = node->y;
// the first time through, visited_width might be reduced // the first time through, visited_width might be reduced
if (node->x < x0) if (node->x < x0)
visited_width += node->next->x - x0; visited_width += node->next->x - x0;
else else
visited_width += node->next->x - node->x; visited_width += node->next->x - node->x;
} } else {
else { // add waste area
// add waste area int under_width = node->next->x - node->x;
int under_width = node->next->x - node->x; if (under_width + visited_width > width)
if (under_width + visited_width > width) under_width = width - visited_width;
under_width = width - visited_width; waste_area += under_width * (min_y - node->y);
waste_area += under_width * (min_y - node->y); visited_width += under_width;
visited_width += under_width; }
} node = node->next;
node = node->next; }
}
*pwaste = waste_area; *pwaste = waste_area;
return min_y; return min_y;
} }
typedef struct typedef struct
{ {
int x, y; int x,y;
stbrp_node** prev_link; stbrp_node **prev_link;
} stbrp__findresult; } stbrp__findresult;
static stbrp__findresult stbrp__skyline_find_best_pos(stbrp_context* c, int width, int height) static stbrp__findresult stbrp__skyline_find_best_pos(stbrp_context *c, int width, int height)
{ {
int best_waste = (1 << 30), best_x, best_y = (1 << 30); int best_waste = (1<<30), best_x, best_y = (1 << 30);
stbrp__findresult fr; stbrp__findresult fr;
stbrp_node** prev, * node, * tail, ** best = NULL; stbrp_node **prev, *node, *tail, **best = NULL;
// align to multiple of c->align // align to multiple of c->align
width = (width + c->align - 1); width = (width + c->align - 1);
width -= width % c->align; width -= width % c->align;
STBRP_ASSERT(width % c->align == 0); STBRP_ASSERT(width % c->align == 0);
// if it can't possibly fit, bail immediately // if it can't possibly fit, bail immediately
if (width > c->width || height > c->height) { if (width > c->width || height > c->height) {
fr.prev_link = NULL; fr.prev_link = NULL;
fr.x = fr.y = 0; fr.x = fr.y = 0;
return fr; return fr;
} }
node = c->active_head; node = c->active_head;
prev = &c->active_head; prev = &c->active_head;
while (node->x + width <= c->width) { while (node->x + width <= c->width) {
int y, waste; int y,waste;
y = stbrp__skyline_find_min_y(c, node, node->x, width, &waste); y = stbrp__skyline_find_min_y(c, node, node->x, width, &waste);
if (c->heuristic == STBRP_HEURISTIC_Skyline_BL_sortHeight) { // actually just want to test BL if (c->heuristic == STBRP_HEURISTIC_Skyline_BL_sortHeight) { // actually just want to test BL
// bottom left // bottom left
if (y < best_y) { if (y < best_y) {
best_y = y; best_y = y;
best = prev; best = prev;
}
} else {
// best-fit
if (y + height <= c->height) {
// can only use it if it first vertically
if (y < best_y || (y == best_y && waste < best_waste)) {
best_y = y;
best_waste = waste;
best = prev;
} }
} }
else { }
// best-fit prev = &node->next;
if (y + height <= c->height) { node = node->next;
// can only use it if it first vertically }
if (y < best_y || (y == best_y && waste < best_waste)) {
best_y = y; best_x = (best == NULL) ? 0 : (*best)->x;
best_waste = waste;
best = prev; // if doing best-fit (BF), we also have to try aligning right edge to each node position
} //
// e.g, if fitting
//
// ____________________
// |____________________|
//
// into
//
// | |
// | ____________|
// |____________|
//
// then right-aligned reduces waste, but bottom-left BL is always chooses left-aligned
//
// This makes BF take about 2x the time
if (c->heuristic == STBRP_HEURISTIC_Skyline_BF_sortHeight) {
tail = c->active_head;
node = c->active_head;
prev = &c->active_head;
// find first node that's admissible
while (tail->x < width)
tail = tail->next;
while (tail) {
int xpos = tail->x - width;
int y,waste;
STBRP_ASSERT(xpos >= 0);
// find the left position that matches this
while (node->next->x <= xpos) {
prev = &node->next;
node = node->next;
}
STBRP_ASSERT(node->next->x > xpos && node->x <= xpos);
y = stbrp__skyline_find_min_y(c, node, xpos, width, &waste);
if (y + height <= c->height) {
if (y <= best_y) {
if (y < best_y || waste < best_waste || (waste==best_waste && xpos < best_x)) {
best_x = xpos;
STBRP_ASSERT(y <= best_y);
best_y = y;
best_waste = waste;
best = prev;
}
} }
} }
prev = &node->next; tail = tail->next;
node = node->next; }
} }
best_x = (best == NULL) ? 0 : (*best)->x; fr.prev_link = best;
fr.x = best_x;
// if doing best-fit (BF), we also have to try aligning right edge to each node position fr.y = best_y;
// return fr;
// e.g, if fitting
//
// ____________________
// |____________________|
//
// into
//
// | |
// | ____________|
// |____________|
//
// then right-aligned reduces waste, but bottom-left BL is always chooses left-aligned
//
// This makes BF take about 2x the time
if (c->heuristic == STBRP_HEURISTIC_Skyline_BF_sortHeight) {
tail = c->active_head;
node = c->active_head;
prev = &c->active_head;
// find first node that's admissible
while (tail->x < width)
tail = tail->next;
while (tail) {
int xpos = tail->x - width;
int y, waste;
STBRP_ASSERT(xpos >= 0);
// find the left position that matches this
while (node->next->x <= xpos) {
prev = &node->next;
node = node->next;
}
STBRP_ASSERT(node->next->x > xpos && node->x <= xpos);
y = stbrp__skyline_find_min_y(c, node, xpos, width, &waste);
if (y + height <= c->height) {
if (y <= best_y) {
if (y < best_y || waste < best_waste || (waste == best_waste && xpos < best_x)) {
best_x = xpos;
STBRP_ASSERT(y <= best_y);
best_y = y;
best_waste = waste;
best = prev;
}
}
}
tail = tail->next;
}
}
fr.prev_link = best;
fr.x = best_x;
fr.y = best_y;
return fr;
} }
static stbrp__findresult stbrp__skyline_pack_rectangle(stbrp_context* context, int width, int height) static stbrp__findresult stbrp__skyline_pack_rectangle(stbrp_context *context, int width, int height)
{ {
// find best position according to heuristic // find best position according to heuristic
stbrp__findresult res = stbrp__skyline_find_best_pos(context, width, height); stbrp__findresult res = stbrp__skyline_find_best_pos(context, width, height);
stbrp_node* node, * cur; stbrp_node *node, *cur;
// bail if: // bail if:
// 1. it failed // 1. it failed
// 2. the best node doesn't fit (we don't always check this) // 2. the best node doesn't fit (we don't always check this)
// 3. we're out of memory // 3. we're out of memory
if (res.prev_link == NULL || res.y + height > context->height || context->free_head == NULL) { if (res.prev_link == NULL || res.y + height > context->height || context->free_head == NULL) {
res.prev_link = NULL; res.prev_link = NULL;
return res; return res;
} }
// on success, create new node // on success, create new node
node = context->free_head; node = context->free_head;
node->x = (stbrp_coord)res.x; node->x = (stbrp_coord) res.x;
node->y = (stbrp_coord)(res.y + height); node->y = (stbrp_coord) (res.y + height);
context->free_head = node->next; context->free_head = node->next;
// insert the new node into the right starting point, and // insert the new node into the right starting point, and
// let 'cur' point to the remaining nodes needing to be // let 'cur' point to the remaining nodes needing to be
// stiched back in // stiched back in
cur = *res.prev_link; cur = *res.prev_link;
if (cur->x < res.x) { if (cur->x < res.x) {
// preserve the existing one, so start testing with the next one // preserve the existing one, so start testing with the next one
stbrp_node* next = cur->next; stbrp_node *next = cur->next;
cur->next = node; cur->next = node;
cur = next; cur = next;
} } else {
else { *res.prev_link = node;
*res.prev_link = node; }
}
// from here, traverse cur and free the nodes, until we get to one // from here, traverse cur and free the nodes, until we get to one
// that shouldn't be freed // that shouldn't be freed
while (cur->next && cur->next->x <= res.x + width) { while (cur->next && cur->next->x <= res.x + width) {
stbrp_node* next = cur->next; stbrp_node *next = cur->next;
// move the current node to the free list // move the current node to the free list
cur->next = context->free_head; cur->next = context->free_head;
context->free_head = cur; context->free_head = cur;
cur = next; cur = next;
} }
// stitch the list back in // stitch the list back in
node->next = cur; node->next = cur;
if (cur->x < res.x + width) if (cur->x < res.x + width)
cur->x = (stbrp_coord)(res.x + width); cur->x = (stbrp_coord) (res.x + width);
#ifdef _DEBUG #ifdef _DEBUG
cur = context->active_head; cur = context->active_head;
while (cur->x < context->width) { while (cur->x < context->width) {
STBRP_ASSERT(cur->x < cur->next->x); STBRP_ASSERT(cur->x < cur->next->x);
cur = cur->next; cur = cur->next;
} }
STBRP_ASSERT(cur->next == NULL); STBRP_ASSERT(cur->next == NULL);
{ {
int count = 0; int count=0;
cur = context->active_head; cur = context->active_head;
while (cur) { while (cur) {
cur = cur->next; cur = cur->next;
++count; ++count;
} }
cur = context->free_head; cur = context->free_head;
while (cur) { while (cur) {
cur = cur->next; cur = cur->next;
++count; ++count;
} }
STBRP_ASSERT(count == context->num_nodes + 2); STBRP_ASSERT(count == context->num_nodes+2);
} }
#endif #endif
return res; return res;
} }
static int rect_height_compare(const void* a, const void* b) static int STBRP__CDECL rect_height_compare(const void *a, const void *b)
{ {
const stbrp_rect* p = (const stbrp_rect*)a; const stbrp_rect *p = (const stbrp_rect *) a;
const stbrp_rect* q = (const stbrp_rect*)b; const stbrp_rect *q = (const stbrp_rect *) b;
if (p->h > q->h) if (p->h > q->h)
return -1; return -1;
if (p->h < q->h) if (p->h < q->h)
return 1; return 1;
return (p->w > q->w) ? -1 : (p->w < q->w); return (p->w > q->w) ? -1 : (p->w < q->w);
} }
static int rect_original_order(const void* a, const void* b) static int STBRP__CDECL rect_original_order(const void *a, const void *b)
{ {
const stbrp_rect* p = (const stbrp_rect*)a; const stbrp_rect *p = (const stbrp_rect *) a;
const stbrp_rect* q = (const stbrp_rect*)b; const stbrp_rect *q = (const stbrp_rect *) b;
return (p->was_packed < q->was_packed) ? -1 : (p->was_packed > q->was_packed); return (p->was_packed < q->was_packed) ? -1 : (p->was_packed > q->was_packed);
} }
#ifdef STBRP_LARGE_RECTS STBRP_DEF int stbrp_pack_rects(stbrp_context *context, stbrp_rect *rects, int num_rects)
#define STBRP__MAXVAL 0xffffffff
#else
#define STBRP__MAXVAL 0xffff
#endif
STBRP_DEF int stbrp_pack_rects(stbrp_context* context, stbrp_rect* rects, int num_rects)
{ {
int i, all_rects_packed = 1; int i, all_rects_packed = 1;
// we use the 'was_packed' field internally to allow sorting/unsorting // we use the 'was_packed' field internally to allow sorting/unsorting
for (i = 0; i < num_rects; ++i) { for (i=0; i < num_rects; ++i) {
rects[i].was_packed = i; rects[i].was_packed = i;
} }
// sort according to heuristic // sort according to heuristic
STBRP_SORT(rects, num_rects, sizeof(rects[0]), rect_height_compare); STBRP_SORT(rects, num_rects, sizeof(rects[0]), rect_height_compare);
for (i = 0; i < num_rects; ++i) { for (i=0; i < num_rects; ++i) {
if (rects[i].w == 0 || rects[i].h == 0) { if (rects[i].w == 0 || rects[i].h == 0) {
rects[i].x = rects[i].y = 0; // empty rect needs no space rects[i].x = rects[i].y = 0; // empty rect needs no space
} } else {
else { stbrp__findresult fr = stbrp__skyline_pack_rectangle(context, rects[i].w, rects[i].h);
stbrp__findresult fr = stbrp__skyline_pack_rectangle(context, rects[i].w, rects[i].h); if (fr.prev_link) {
if (fr.prev_link) { rects[i].x = (stbrp_coord) fr.x;
rects[i].x = (stbrp_coord)fr.x; rects[i].y = (stbrp_coord) fr.y;
rects[i].y = (stbrp_coord)fr.y; } else {
} rects[i].x = rects[i].y = STBRP__MAXVAL;
else { }
rects[i].x = rects[i].y = STBRP__MAXVAL; }
} }
}
}
// unsort // unsort
STBRP_SORT(rects, num_rects, sizeof(rects[0]), rect_original_order); STBRP_SORT(rects, num_rects, sizeof(rects[0]), rect_original_order);
// set was_packed flags and all_rects_packed status // set was_packed flags and all_rects_packed status
for (i = 0; i < num_rects; ++i) { for (i=0; i < num_rects; ++i) {
rects[i].was_packed = !(rects[i].x == STBRP__MAXVAL && rects[i].y == STBRP__MAXVAL); rects[i].was_packed = !(rects[i].x == STBRP__MAXVAL && rects[i].y == STBRP__MAXVAL);
if (!rects[i].was_packed) if (!rects[i].was_packed)
all_rects_packed = 0; all_rects_packed = 0;
} }
// return the all_rects_packed status // return the all_rects_packed status
return all_rects_packed; return all_rects_packed;
} }
#endif #endif

File diff suppressed because it is too large Load Diff